1.8 CF Standard Names: Tendency of Atmosphere Mass Content of Alkanes due to Emission (tendency_of_atmosphere_mass_content_of_alkanes_due_to_emission)

Record Label : tendency_of_atmosphere_mass_content_of_alkanes_due_to_emission

Record Title : Tendency of Atmosphere Mass Content of Alkanes due to Emission

CF Standard Name : tendency_of_atmosphere_mass_content_of_alkanes_due_to_emission

Record Description : "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_of_atmosphere_layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_to_" process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_of_X" means derivative of X with respect to time. Alkanes are saturated hydrocarbons, i.e. they do not contain any chemical double bonds. "Hydrocarbon" means a compound containing hydrogen and carbon. Alkanes contain only hydrogen and carbon combined in the general proportions C(n)H(2n+2); "alkanes" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual alkane species, e.g., methane and ethane.

Canonical Units : kg m-2 s-1